Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid.
نویسندگان
چکیده
Quorum sensing is a phenomenon in which bacteria sense and respond to their own population density by releasing and sensing pheromones. In gram-negative bacteria, quorum sensing is often performed by the LuxR family of transcriptional regulators, which affect phenotypes as diverse as conjugation, bioluminescence, and virulence gene expression. The gene encoding one LuxR family member, named sdiA (suppressor of cell division inhibition), is present in the Escherichia coli genome. In this report, we have cloned the Salmonella typhimurium homolog of SdiA and performed a systematic screen for sdiA-regulated genes. A 4.4-kb fragment encoding the S. typhimurium sdiA gene was sequenced and found to encode the 3' end of YecC (homologous to amino acid transporters of the ABC family), all of SdiA and SirA (Salmonella invasion regulator), and the 5' end of UvrC. This gene organization is conserved between E. coli and S. typhimurium. We determined that the S. typhimurium sdiA gene was able to weakly complement the E. coli sdiA gene for activation of ftsQAZ at promoter 2 and for suppression of filamentation caused by an ftsZ(Ts) allele. To better understand the function of sdiA in S. typhimurium, we screened 10,000 random lacZY transcriptional fusions (MudJ transposon mutations) for regulation by sdiA. Ten positively regulated fusions were isolated. Seven of the fusions were within an apparent operon containing ORF8, ORF9, rck (resistance to complement killing), and ORF11 of the S. typhimurium virulence plasmid. The three ORFs have now been named srgA, srgB, and srgC (for sdiA-regulated gene), respectively. The DNA sequence adjacent to the remaining three fusions shared no similarity with previously described genes.
منابع مشابه
Anti-quorum sensing effects of Licochalcone A and Epigallocatechin-3-gallate against Salmonella Typhimurium from poultry sources
Quorum sensing (QS) is a cell density-dependent mechanism used by many pathogenic bacteria for regulating virulence gene expression. Inhibition or interruption of QS by medicinal plant remedies has been suggested as a new strategy for fighting against antibiotic-resistant bacteria. This study aimed to assess the impact of sub-inhibitory concentrations of licochalcone A (LAA) and epigallocatechi...
متن کاملSdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities.
Proteins of the LuxR family detect the presence of N-acylhomoserine lactones (AHLs) and regulate transcription accordingly. When AHLs are synthesized by the same species that detects them, the system allows a bacterium to measure the population density of its own species, a phenomenon known as quorum sensing. The sdiA genes of Escherichia coli and Salmonella enterica serovar Typhimurium are pre...
متن کاملEffect of sdiA on biosensors of N-acylhomoserine lactones.
Many gram-negative bacteria synthesize N-acylhomoserine lactones (AHLs) and then use transcription factors of the LuxR family to sense and respond to AHL accumulation in the environment; this phenomenon is termed quorum sensing. Bacteria produce a variety of AHLs, and numerous bacterial reporter strains, or biosensors, that can detect subsets of these molecules have been constructed. Many of th...
متن کاملSalmonella Typhimurium invasion of HEp-2 epithelial cells in vitro is increased by N-acylhomoserine lactone quorum sensing signals
BACKGROUND In Gram-negative bacteria, the most commonly studied quorum sensing signals are the N-acylhomoserine lactones (AHLs). In Salmonella, AHLs are recognized by SdiA, which is believed to be a sensor of AHLs produced by other bacteria, since Salmonella does not produce AHLs itself. It has been speculated that AHLs produced by the gastrointestinal flora may influence the regulation of viru...
متن کاملIdentification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae
Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 5 شماره
صفحات -
تاریخ انتشار 1998